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We describe the first enzymatic incorporation of an a-L-LNA nucleotide into an oligonucleotide. It was found that the
5’-triphosphate of a-L-LNA is a substrate for the DNA polymerases KOD, 9°Nm, Phusion and HIV RT. Three dispersed a-L-
LNA thymine nucleotides can be incorporated into DNA strands by all four polymerases, but they were unable to perform
consecutive incorporations of a-L-LNA nucleotides. In addition it was found that primer extension can be achieved using
templates containing one a-L-LNA nucleotide.

Introduction

Locked nucleic acid1-3 (LNA) and its diastereomer a-L-LNA4-10

(a-L-configured locked nucleic acid) have found numerous
applications within the field of nucleic acid chemical biology.11-14

Recently, enzymatic incorporation of LNA nucleotides has been
realized.15-21 So far, no report on enzymatic incorporation of an
a-L-LNA nucleotide, or any other LNA stereoisomeric nucleo-
tide, has been published. In this paper we disclose the results
of initial experiments on the compatibility of polymerases with
a-L-LNA nucleotides.

As is the case with LNA, oligonucleotides containing a-L-LNA
nucleotides show very efficient binding to complementary nucleic
acids.4-10 In addition, a-L-LNA nucleotides provide protection
from nucleases when incorporated into oligonucleotides.9,22,23

NMR studies concluded that DNA strands containing three a-L-
LNA incorporations formed duplexes with DNA and RNA that
were of the B-type and intermediate A/B-type, respectively.24,25

Thus, a-L-LNA can be considered a DNA mimic.
The interesting properties of a-L-LNA led us to investigate

the compatibility of polymerases with a-L-LNA nucleotides. We
were encouraged by the fact that LNA nucleotides can be
incorporated by a variety of polymerases.15-21 In particular, KOD
is very efficient at incorporating LNA nucleotides as well as
reading LNA-containing templates.18 In general, KOD was found
to be non-restrictive with respect to both furanose ring puckering

and C2'-modification since ribonucleotides could also be
incorporated by KOD.18

The structures of LNA and a-L-LNA (Fig. 1) do not seem to
be similar at first glance, but it has been shown that the
positioning of atoms important for duplex formation (the O5' and
O3' atoms of the sugar ring and the N1 atom of the nucleobase)
overlay to a large extent in the two nucleotides.4 Given the success
of enzymatic incorporation of LNA nucleotides15-21 we therefore
speculated that the unusual sugar moiety of a-L-LNA could as
well be accepted by some polymerases. Many examples of
incorporation of nucleotides with unnatural sugar moieties exist in
literature,19,26-33 and a number of studies on stereoisomeric forms
of 2'-deoxynucleotide triphosphates have shown that these in
many cases act as chain terminators.34-43
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Figure 1. Structures of LNA and a-L-LNA nucleotides
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Results

Synthesis of a-L-LNA TTP. The 5'-triphosphate of the thymine
a-L-LNA nucleoside (a-L-LNA TTP) was synthesized in two
steps from the known nucleoside 1 (Scheme 1).7 Nucleoside 1
was detritylated and the resulting nucleoside 27 was converted to
a-L-LNA TTP using the approach initially developed by Ludwig44

and subsequently used by Veedu et al. to synthesize LNA NTPs.16

This approach involves phosphorylation of the primary alcohol
followed by reaction with pyrophosphate. a-L-LNA TTP was
obtained in an overall yield of 4% after purification over an ion-
exchange resin (see Materials and Methods for details).

Incorporation of a-L-LNA thymine nucleotides. Primer
extension experiments were performed on three different
primer-template complexes (Fig. 2) to test the limits of a-L-
LNA-T nucleotide incorporation across 2'-deoxyadenosines in
the template. Template T1 contained three 2'-deoxyadenosines
surrounded by 2'-deoxynucleotides of the other three nucleo-
bases, while template T2 contained eight consecutive
2'-deoxyadenosines. Template T3 contained only one 2'-
deoxyadenosine for coding which was placed at the beginning.
Thus, for T3 the polymerases needed to start by extending the
primer with a-L-LNA-T as the first nucleotide.

Positive and negative control reactions were performed in
parallel with reactions with a-L-LNA TTP. The reaction mixture
of the positive controls contained all four natural dNTPs and
led to extension of the primer to full length. Negative control
reaction mixtures contained only dATP, dGTP and dCTP and
were expected to stop at the first 2'-deoxyadenosine of the
template. a-L-LNA incorporation was tested using reaction
mixtures containing dATP, dGTP, dCTP and a-L-LNA TTP.
Radiolabeled P1 and T1 were used as 19mer and 43mer markers.

The following seven polymerases were initially explored for
their ability to incorporate a-L-LNA nucleotides: the Klenow
fragment of E. coli DNA polymerase I (A-family polymerase);
KOD, 9°Nm and Phusion DNA polymerases (B-family poly-
merase); human polymerase β (X-family polymerase); S. solfatari-
cus DNA polymerase IV (Dpo4, Y-family polymerase); and HIV
RT (reverse transcriptase family polymerase). It was found that
the four most efficient polymerases for a-L-LNA nucleotide
incorporation were KOD, 9°Nm, Phusion and HIV RT. Figure 3
shows the results of primer extension experiments on the T1
template for these four polymerases. The experiment demon-
strated that KOD, 9°Nm and Phusion DNA polymerases can
efficiently accept a-L-LNA TTP as a substrate and afford the full-
length extension products (lane 2). In particular, KOD is very
quick at extending the primer to full length, however accompan-
ied by some product degradation. Although HIV RT could also
produce the fully extended product in low yield, the reaction
did not progress to completion in the time the other three
polymerases required.

Next, consecutive incorporation of a-L-LNA-T nucleotides
was investigated (Fig. 4). KOD, Phusion and HIV RT were
unable to extend the primer beyond the first incorporation of a-L-
LNA-T (lane 2). 9°Nm DNA polymerase was able to incorporate
consecutive a-L-LNA-T nucleotides, but full-length extension
product was not observed. It appears that 9°Nm did not move
forward methodically. Rather, 9°Nm seemed to quickly incorpo-
rate several a-L-LNA-T nucleotides before stopping extension.
On comparison with a known DNA marker (not shown), we
could conclude that a major product of the extension was 31
nucleotides long corresponding to consecutive incorporation of
five a-L-LNA-T nucleotides, though some of the shorter products
were also present in trace amounts.

Scheme 1. Chemical synthesis of a-L-LNA TTP. (i) Cl2CHCOOH, Et3SiH, CH2Cl2 (100%); (ii) (1) (MeO)3PO, proton sponge, POCl3, -10°C A -5°C; (2) tri-n-
butylamine, tributylammonium pyrophosphate, dimethylformamide, -5°C; (3) triethylammonium bicarbonate (4%).

Figure 2. Primer-template complexes for primer extension experiments using a-L-LNA TTP. 2’-Deoxyadenosines encoding incorporation of a-L-LNA
thymines are underlined.
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We also investigated whether the polymerases needed a running

start in order to incorporate a-L-LNA-T nucleotides. We
designed template T3 to direct the extension of the primer with
a-L-LNA TTP as the first triphosphate to be used as substrate.
The results in Figure 5 show that KOD, 9°Nm and HIV RT
were able to extend the primer to full length. In fact, KOD was
so efficient with template T3 that misincorporation bands are
seen in the positive and negative control reactions (Fig. 5, lanes 1
and 3). Phusion DNA polymerase proceeded with difficulty in

extending the primer to afford only trace amounts of full-length
product.

Primer extension using templates containing a-L-LNA
nucleotides. Next, we investigated whether the four polymerases
are able to use a-L-LNA TTP as substrate that can tolerate a-L-
LNA nucleotides in the template. The commercially available T
and 5-methyl-C a-L-LNA phosphoramidites were used to pro-
duce templates T4-T7 (Fig. 6). In templates T5 and T7, a-L-
LNA nucleotides are placed one after another to produce a four

Figure 3. Primer extension using template T1. Lane 1: positive control (dATP, dGTP, dCTP and TTP); lane 2: incorporation of a-L-LNA-T nucleotides (dATP,
dGTP, dCTP and a-L-LNA TTP); lane 3: negative control (dATP, dGTP and dCTP); lane 4: P1 and T1 (19mer and 43mer).

Figure 4. Primer extension using template T2. Lane 1: positive control (dATP, dGTP, dCTP and TTP); lane 2: incorporation of a-L-LNA-T nucleotides (dATP,
dGTP, dCTP and a-L-LNA TTP); lane 3: negative control (dATP, dGTP and dCTP); lane 4: P1 and T1 (19mer and 43mer).
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nucleotide stretch of a-L-LNA nucleotides. In templates T4 and
T6, a-L-LNA nucleotides are surrounded by 2'-deoxynucleotides.

Incorporation of 2'-deoxynucleotides using templates contain-
ing a-L-LNA nucleotides was tested by positive control reactions
in which the mixture contained all four natural dNTPs. Negative
control reactions were run in parallel. Negative control mixtures
contained only dGTP, dCTP and dTTP (for incorporation across
a-L-LNA-T) or dATP, dCTP and dTTP (for incorporation across
a-L-LNA-5-methyl-C).

KOD, 9°Nm, Phusion and HIV RT which performed well at
a-L-LNA-T incorporations were investigated for their ability to
use templates containing a-L-LNA nucleotides. The results of
primer extension experiments using templates T4-T7 are shown
in Figure 7. All four polymerases demonstrated difficulties in
extending the primer using templates T4-T7. However, template
T6 which contained a single a-L-LNA-5-methyl-C nucleotide
afforded the full-length extension product by all four polymerases
(Fig. 7, lane 5) with KOD as the more efficient.

Discussion

Incorporation of a-L-LNA nucleotides. KOD, 9°Nm and
Phusion DNA polymerases were able to incorporate a-L-LNA-
T nucleotides when template T1 was used (Fig. 3) whereas

incorporation using template T2 proved to be much more
difficult (Fig. 4). A NMR structure determination of an a-L-
LNA/DNA:DNA duplex concluded that the DNA backbone
must rearrange to accommodate the a-L-LNA nucleotides in
order for optimal Watson-Crick base pairing to take place.24 This
may explain the differences in primer extension between templates
T1 and T2. In the case of T1, the growing primer strand did not
contain consecutive a-L-LNA nucleotides, which meant that the
backbone could possibly rearrange to keep the 3'-oxygen in the
right position in the polymerase active site for further extension.

Primer extension using templates containing a-L-LNA
nucleotides. In general, primer extension was difficult when
using a-L-LNA-containing templates. Only the T6 template,
which contained a single a-L-LNA-5-methyl-C nucleotide, was
capable of templating full-length primer extension (Fig. 7). It was
not surprising that templates T5 and T7 could not be used for
primer extension since the polymerases had great difficulty in
incorporating several a-L-LNA nucleotides in a row (Fig. 4).
On this note it was, however, surprising that full-length extension
product was not observed for template T4 since a-L-LNA
nucleotides were not positioned consecutively. Possibly,
rearrangement of the backbone induced by the a-L-LNA
nucleotides is unfavorable for template function in general, e.g.,
because of steric clashes between with the polymerase and the

Figure 5. Primer extension using template T3. Lane 1: positive control (dATP, dGTP, dCTP and TTP); lane 2: incorporation of a-L-LNA-T nucleotides (dATP,
dGTP, dCTP and a-L-LNA TTP); lane 3: negative control (dATP, dGTP and dCTP); lane 4: P1 (19mer).

Figure 6. Primer-template complexes for primer extension experiments using templates containing a-L-LNA nucleotides. a-L-LNA nucleotides are
underlined.
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modified template strand. In general, primer extension was not
halted at the position of the a-L-LNA nucleotide but rather at the
subsequent position. Perhaps the high stability of the a-L-LNA:
DNA pairing and/or the unique structure of the a-L-LNA
nucleotides prevent the flexibility needed to position the primer
strand 3'-oxygen correctly in the active site of the polymerases for
further extension.

Comparison with LNA nucleotide incorporation. Of the seven
polymerases tested for their ability to incorporate a-L-LNA nucleo-
tides, the three B-family polymerases (KOD, 9°Nm and Phusion)
proved to be by far the most efficient. This is not to say that other
B-family polymerases will be efficient too as Deep Vent and
Therminator proved to be poor at incorporating LNA nucleotides,
contrary to KOD, 9°Nm and Phusion DNA polymerases.18

Figure 7. Primer extension using templates T4-T7. Lanes 1, 3, 5 and 7: positive controls (dATP, dGTP, dCTP and TTP); lanes 2, 4, 6 and 8: negative controls
[dGTP, dCTP and dTTP (for incorporation across a-L-LNA-T); or dATP, dCTP and dTTP (for incorporation across a-L-LNA-5-methyl-C)]; lanes 1 and 2:
template T4; lanes 3 and 4: template T5; lanes 5 and 6: template T6; lanes 7 and 8: template T7; lane 9: P1 and T1 (19mer and 43mer).
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In general, incorporation of a-L-LNA nucleotides proved to be
more difficult than incorporation of LNA nucleotides.15-21

Furthermore, templates containing LNA nucleotides are readily
used by KOD and 9°Nm for primer extension reactions.17,18

LNA nucleotides are RNA mimics and have been shown to
conformationally steer the 3'-flanking sugar toward N-type sugar
puckers.45 In this light, it can be considered surprising that DNA-
mimicking a-L-LNA nucleotides, which do not conformationally
steer flanking nucleotide sugars,24 are poorly accepted by
polymerases when incorporated into template strands.

At present, KOD is the polymerase of choice for LNA
nucleotide incorporation.18,19,21 KOD also performed well with
respect to a-L-LNA nucleotide incorporation though KOD
could not incorporate consecutive a-L-LNA nucleotides. KOD
can perform this task when using LNA triphosphates, and even
extension of primers exclusively using LNA triphosphates has
been achieved.21 KOD has been shown to be non-restrictive in
regard to sugar puckering and modification at the 2'-position.18

Accordingly, a-L-LNA TTP was accepted as a substrate by KOD.
9°Nm likewise performed well with respect to a-L-LNA

nucleotide incorporation. 9°Nm was the only polymerase capable
of incorporating consecutive a-L-LNA nucleotides. 9°Nm has also
been used for incorporation of LNA nucleotides, and PCR
amplification has been achieved using LNA triphosphates and this
polymerase.17

Phusion was able to incorporate a-L-LNA nucleotides, but the
primer could not be extended to full length when several a-L-
LNA nucleotides in a row had to be incorporated. This was also
observed for LNA incorporations, in which case Phusion was able
to incorporate up to three consecutive LNA-T nucleotides.16

HIV RT was unsuccessful when we tried to incorporate LNA
nucleotides into oligonucleotides (R. N. Veedu and J. Wengel,
unpublished data), however, a-L-LNA nucleotides could be
incorporated under certain conditions. Some full-length product
was observed using template T1 and HIV RT was efficient at
incorporating a-L-LNA nucleotides when template T3 was used.
The incorporation profile of HIV RT was similar to the other
three polymerases when templates containing a-L-LNA nucleo-
tides were used in that full-length extension product was observed
for template T6 only and for T4, T5 and T7, extension was
halted at the first site of incorporation or possibly after a
misincorporation.

Conclusion

KOD, 9°Nm, Phusion and HIV RT polymerases are able to
accept a-L-LNA TTP as a substrate and to produce full-length
primer extension reactions. However, primer extension involving
consecutive incorporations of a-L-LNA nucleotides proved
difficult. Templates containing more than one a-L-LNA nucleo-
tide were not suitable for primer extension reaction when using
these four polymerases. The fact that standard DNA polymerases
are able to incorporate a-L-LNA nucleotides and to read a-L-
LNA-containing templates is notable taking the highly unnatural
conformational and configurational features of a-L-LNA nucleo-
tides into consideration. Further advances are needed to obtain

more efficient replication of a-L-LNA nucleotides, but the results
presented herein represent the first step toward including a-L-
LNA nucleotides in the context of biotechnology, e.g., aptamer
evolution.

Materials and Methods

1-(2'-O,4'-C-methylene-a-L-ribofuranosyl)thymine (2) Nucleo-
side 17 (0.26 g and 0.45 mmol) was dissolved in methylene
chloride (5.0 ml) and dichloroacetic acid (0.10 ml and 1.2 mmol)
and Et3SiH (0.15 ml, 0.94 mmol) were slowly added. The
reaction was quenched after 1 h using MeOH. The mixture was
evaporated to dryness. The product was obtained as a white solid
after column chromatographic purification (0–5% MeOH/DCM,
v/v). Yield 0.12 g (100%). 1H NMR data were consistent with
literature.7 This known compound has been synthesized via a new
route from the O5'-protected precursor.

The O5'-triphosphate of 1-(2'-O,4'-C-methylene-a-L-
ribofuranosyl)thymine (a-L-LNA TTP) Nucleoside 2 (0.12 g,
0.45 mmol) was dissolved in (MeO)3PO (1.9 ml) and proton
sponge (110 mg, 0.51 mmol) was added. The reaction mixture
was cooled to -10°C and freshly distilled POCl3 (44 ml,
0.48 mmol) was added dropwise under stirring. The mixture
was stirred for 2 h at temperatures ranging from -10°C to -5°C.
Bu3N (0.32 ml, 1.3 mmol) and a 0.50 M solution of tributyl-
ammonium pyrophosphate in dimethylformamide (4.0 ml,
2.0 mmol) were added and the reaction mixture was stirred for
another 2 h at -5°C. The reaction was quenched with a 0.50 M
solution of triethylammonium bicarbonate (20 ml). The product
was obtained after gravity column chromatographic purification
using a WHATMAN DEAE cellulose-D50 anion-exchange resin
and a gradient of triethylammonium bicarbonate in water. 31P
NMR (H2O): d -9.8 (c-P), -10.1 (a-P), -22.4 (β-P). HRMS
(ESI) m/z calculated for C11H16N2O15P3- (M-): 508.9768; found
508.9743.

General procedure for primer extension experiments. All
water was distilled twice before use. Unmodified primers and
templates were purchased from Sigma-Genosys. Templates
containing a-L-LNA nucleotides were produced in-house using
commercially available phosphoramidites (Exiqon). Primers were
5'-32P labeled by [c-32P]-ATP (~6000 Ci/mmol, GE Healthcare)
using T4 polynucleotide kinase (NEB, supplied by Medinova,
M0201S) according to a procedure by the manufacturer. Primer
and template were mixed in a 1:2 ratio. The mixture was heated
to 80°C and subsequently slowly cooled to 37°C. Primer exten-
sion reactions were initiated by adding polymerase to a mix of
buffer, nucleoside triphosphates and primer:template complex.
The final concentration of nucleoside triphosphates in the used
mix was approximately 190 mM. After a quick mixing, reaction
tubes were incubated at the optimum temperature for the particular
polymerase. Reaction volumes were 20.0 ml and a 5 ml aliqout was
added to 2.25 ml loading buffer (95% formamide, 20 mM EDTA,
bromophenol blue and xylene cyanol dyes) to stop the reaction.
Products were separated on 13% 7M urea polyacrylamide gels using
TBE buffer (100 mM Tris, 90 mM boric acid, 1 mM EDTA,
pH 8.4) and visualized by phosphor imaging.
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Composition of the primer extension reactions.
KOD (TOYOBO, supplied by Novagen, 71085-3).
2.50 ml 10X KOD buffer 1
1.00 ml MgCl2 (25 mM)
1.00 ml MnCl2 (50 mM)
1.50 ml Triphosphate mixture (2.50 mM each)
0.60 ml Primer:template complex (5.0:10.0 mM)
0.60 ml KOD polymerase (2.50 U/ml)
12.8 ml Twice distilled water

9°Nm (NEB, supplied by Medinova, M0260S).
2.00 ml 10X Thermopol buffer
1.50 ml Triphosphate mixture (2.50 mM each)
0.60 ml Primer:template complex (5.0:10.0 mM)
0.60 ml 9°Nm polymerase (2000 U/ml)
15.3 ml Twice distilled water

Phusion (Finnzymes, F-530S).
4.00 ml 5X Phusion HF buffer
1.50 ml Triphosphate mixture (2.50 mM each)
0.60 ml Primer:template complex (5.0:10.0 mM)
0.60 ml Phusion (2000 U/ml)
13.3 ml Twice distilled water

Human polymerase β (Trevigen, 4020–500-EB).
2.00 ml 10X reaction buffer 8
1.50 ml Triphosphate mixture (2.50 mM each)
0.60 ml Primer:template complex (5.0:10.0 mM)
0.60 ml Human polymerase β (3.3 U/ml)
15.3 ml Twice distilled water

Klenow Fragment (Boehringer Mannheim; NEB, B7002S).

2.00 ml 10X buffer 2
1.50 ml Triphosphate mixture (2.50 mM each)
0.60 ml Primer:template complex (5.0:10.0 mM)
0.60 ml Klenow fragment (1.0 U/ml)
15.3 ml Twice distilled water

Dpo4 (TACS).
2.00 ml 10X Dpo4 buffer 15
2.00 ml MgCl2 (100 mM)
1.00 ml MnCl2 (50 mM)
1.50 ml Triphosphate mixture (2.50 mM each)
0.60 ml Primer:template complex (5.0:10.0 mM)
0.60 ml Dpo4 (0.40 mg/ml)
12.3 ml Twice distilled water

HIV RT (Worthington biochemical company, LS05003).
4.00 ml 5X HIV RT buffer (250 mM TRIS-HCl, 300 mM
KCl, 12.5 mM MgCl2)
1.50 ml Triphosphate mixture (2.50 mM each)
0.60 ml Primer:template complex (5.0:10.0 mM)
0.60 ml HIV RT (2.7 U/ml)
13.3 ml Twice distilled water
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